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1. Introduction 
This document summarizes the work done so far for the task T3.2 “Collaborative approaches” 

(WP3 “Self-configurable approaches for long-term analysis”). 

whose goal is to exploit interactions among multiple entities to optimize the overall performance 

(accuracy or resource-usage). First, we consider the processing stages where interactions are 

based on quality and contextual information. Second, we investigate approaches in camera 

networks where the quality and contextual information of each camera have to be distributed and 

used by other cameras in order to coordinate them. 

 

This task T3.2 depends upon developments within WP2 (T2.1 Analysis tools for human behavior 

understanding, T2.2 Contextual modeling and extraction and T2.3 Quality analysis). The results 

of this task T3.2 will provide self-configurable approaches for long-term analysis and WP4 

Evaluation framework, demonstrators and dissemination. 

 

Here we define collaborative as a process in which various entities (e.g. algorithms) interact to 

achieve a common goal. We differentiate such collaboration from adaptation where a single entity 

(e.g. algorithm) adjust some of its parameters according to various indicators based on quality 

signals or contextual information 
 

1.1. Document structure 
 
The document is structured in the following chapters: 

• Chapter 1: Introduction to this document 

• Chapter 2: description of the contributions 

• Chapter 3: Conclusions and future work 
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2. Contributions 
This chapter compiles the contributions developed in the scope of the task T3.2 

 

2.1. Generic developments 

2.1.1. Enabling collaboration via modelling resource usage  

 

To enable algorithm designers to identify key factors underpinning the development of 

collaborative and resource-aware approaches, we propose a comprehensive model of resource 

consumption for camera networks. This work has been published in the journal IEEE Transactions 

on Circuits and Systems for Video Technology [1]. 

 

We define common parameters that determine the consumption related to sensing (framesize and 

framerate), processing (dynamic frequency scaling and task load) and communication (output 

power and bandwidth). A generic abstraction model is determined based on the clock frequency 

and the duty cycle which considers three operational states, namely active, idle and sleep. We 

demonstrate the usefulness of the proposed model for the task of tracking a target and show the 

dependency on bandwidth and local computation resources. Moreover, cameras not operating at 

full hardware capacity can significantly reduce consumption with minor performance decreases. 

The proposed consumption model can be easily adjusted to many recent platforms, thus providing 

tools for further research in resource-aware camera networks. 

 

 

Figure 1.(left) The functional block diagram of a smart camera. The costs associated to resource 

usage are computed by the resource manager. (right) Typical relative influence between 

modules in a smart camera. Low, Medium and High indicate the impact of resource usage on 

the consumption of a module. 

 

Modelling resource consumption requires to address the following items: 

• Defining resources and hardware capabilities 

• Defining operational states: active, idle and sleep. 

• Compute the total energy consumption 

 

We define the following operational states: 

• The active state is defined when a module performs tasks (sensing photons, 

processing frames or transmitting data). 

• The idle state occurs when a module waits to quickly become active if needed. 

• The sleep state defines the operation with the lowest consumption (i.e. when 

most functionalities are disabled). 
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Figure 2. (a) Three-state model for module operation of smart cameras. States can be 

selected on demand (e.g. the processor is requested to complete a task) or via designer-

defined rules (e.g. go to sleep after a time threshold). (b) Illustrative example for the 

transition costs of the processor SA1100 

(http://research.microsoft.com/apps/pubs/default.aspx?id=238914).Transition power is 

approximately pa for all cases. 
 

The proposed consumption model is based on the power and activation times of a state-model 

with N = 3 states (active, sleep and idle) as depicted in Fig. 2(a). Moreover, the costs of the 

transition between states cannot be neglected. Fig. 2 (b) shows the transition costs for the widely 

used SA-1100 processor (http://research.microsoft.com/apps/pubs/default.aspx?id=238914). 

Each sleep → active transition employs an energy of 64mJ, representing a 15% of the active 

power 

 

The following figures show examples of the achieved results with the proposed models. 
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Figure 3. Energy consumption for the sensing module when changing the framerate and the 

operating frequency for the B3 sensor [2]. Results are for (a) each frame and (b) each second. 

 
Figure 4. Model fitting examples for active power using available single-core measurements for 

SA1100 (74-204Mhz), Cortex-A9 (0-1.6GHz), Cortex-A15 (0.8-1.6GHz) and Krait400 (0.3-

1.5MHz). (a) Measurements and power for active state and (b) associated fitting error. 
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We compare the proposed consumption model against existing models based on utilization (i.e. 

active time of the module) for sensing [3], processing [4] and communication [5]. 

 

 

 
 

Figure 5. (a) Predicted lifetime of the camera network for the proposed and the 

utilization-based consumption models. Bottom (green) curve corresponds to the ideal 

lifetime since experimentally-validated models are used for active-sleep state modelling 

of sensing, processing and communication. (b) Error associated to utilization-based 

consumption models as compared to the proposed one. 

 

2.2. Collaborative shadow detection 
 

The achievement in this area corresponds to the following master thesis: 

 

Detección de sombras en secuencias de vídeo-seguridad (Shadows detection in video-

surveillance sequences), Guillermo Rodríguez Yrezabal (advisor: Juan Carlos San Miguel), 

Proyecto fin de Carrera (Master Thesis), Ingeniería de Telecomunicación, Univ. Autónoma de 

Madrid, Sept. 2016. 

 

The main goal of this master thesis is the design and implementation of a shadow 

detection algorithm. Many computer vision applications such as video-surveillance 

require the detection and object tracking where background subtraction is commonly 

applied for background/foreground segmentation. However, cast shadows from moving 

foreground objects usually result in errors for such applications.  
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Figure 6. Effect of detected shadows in segmentation algorithms 

 

To address these problems, this work proposes the design and implementation of a 

shadow detection algorithm, exploiting the colour information by means of calculating 

the ratios between pixels under shadow regions and background pixels for different colour 

spaces. For this purpose, we first studied, implemented, adapted and evaluated the main 

and most relevant techniques of background subtraction and shadow methods that form 

the basis of most detectors in the literature, highlighting the main gaps they present in 

detecting and removing shadows from image sequences. It is described later the proposed 

algorithm explaining each of the process steps such us the calculation of ratios, 

histograms, colour spaces channel correlation and optimization of thresholds. 

 

 

The shadow detectors employed are based on thresholding operations and therefore, they 

require to learn proper configurations of the best thresholds to be applied. The following 

figure presents such scheme.  

 
 

Figure 7. Proposed scheme to train the models for the collaborative shadow detectors 
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The methodology for collaboration is based on the maximization of mutual agreement 

between independent sources [6]. In short, two algorithms will iteratively change their 

decision parameters until the output converges to a similar result for both shadow 

detectors. This process is illustrated in the following figure. 

 

 
Figure 8. Proposed scheme for collaborative shadow detection 

 

The results associated to every process of the algorithm are presented in four experiments,  

performing a comparative evaluation with some of the algorithms found in the literature. 

 

 
Figure 9. Example of the proposed algorithm (AP) being compared against an approach based 

on chromaticity. 

 

2.3. Collaborative People detection 

2.3.1. Detection threshold adaptation during runtime 

Applying people detectors to unseen data is challenging since pattern distributions may 

significantly differ from the ones of the training dataset.  

 

In this work, we propose a framework to adapt people detectors during prediction time. 

Such adaptation combines multiple detectors to identify their best configurations (i.e. 

detection thresholds) without requiring manually labelled data. This combination is based 

on the maximization of mutual information by correlating the output of pairs of detectors 

which allows to obtain a set of hypotheses for the detection thresholds. These hypotheses 

are later combined by weighted voting to obtain a global decision for the detection 

threshold of each detector. The proposed approach does not require re-training detectors 

and uses standard detector outputs, therefore it can combine various types of detectors. 

The experimental results demonstrate that the proposed approach outperforms state-of-

the-art detectors whose optimal configuration is learned from training data 
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Figure 10. People detection results for Faster R-CNN [13] (sequence S1-T1-C, 

http://www.cvg.reading.ac.uk/PETS2006). Each row corresponds to the detection thresholds 

tao1 = 0:25 (row 1), tao2 = 0:5 (row 2) and tao3 = 0:75 (row 3). Finding an optimal threshold 

for all cases is challenging due to the variability of viewpoints, people sizes and occlusions. 
 

The results of this work have been submitted to the International Conference on Image 

Processing 2017. 

2.4. Collaborative tracking 

2.4.1. Single-target single-camera tracking 1 

First an approach for single-camera settings where multiple trackers are combined based 

on quality measures defined in the task “T2.3 Quality analysis”. This work has been 

published in the journal IEEE Transactions on Circuits and Systems for Video 

Technology.  

 

The proposed approach is inspired by the test and select framework [7] for ensemble 

combination where accurate classifiers are fused if their errors are diverse. Considering 

trackers as classifiers, we extend this framework to video tracking by introducing spatio-

temporal correlation and adaptive online performance evaluation in the following figure. 
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Figure 11. Block diagram of the proposed approach to fuse the output of K trackers. 

 

In this section, we focus on the fusion part which is initially approached as the average 

position of the selected N trackers out of the pool of M trackers (M>N): 

 

 
 

and present the results obtained by this module. 

 

As trackers we use: The first tracker is the Sparse features based Tracker (ST) [8], which 

is PF-based and uses sparse (intensity) features to generate the target appearance model. 

The Maximum a Posteriori criterion is employed to estimate the target state. The second 

tracker is the Adaptive Fragments-based Tracker (AFT) [9] that models the target 

appearance with various fragments. Fragment reliability is based on colour similarity 

between the current and previous fragment, to integrate highly-reliable fragments within 

a PF framework. The third tracker is the Locally Orderless Tracker (LOT) [10] 

that divides the target into superpixels using the HSV colour space. This PF-based tracker 

weights each particle by the distance between the model and the noisy observations. Final 

target state is estimated as the weighted average of particles. The fourth tracker is the 

Incremental Visual Tracker (IVT) [11] that uses an on-line update approach to account 

for appearance changes, and a PF to track the target over time. The fifth tracker is the 

Scale and Orientation Adaptive Mean Shift Tracker (SOAM) [12], that estimates the 

changes in scale and orientation of the target using the mean shift framework, by 

employing Gaussian kernels and image moments. The sixth tracker is the Fast 

Compressive Tracker (FCT) [13] that projects the original image to a low-dimensional 

space. The projected features are then used to formulate tracking as a binary classification 

task via a naive Bayesian classifier. The seventh tracker is the L1 Tracker (L1APG) [14], 

which is based on PF and uses sparse features for target modelling. A fast minimization 

solver is used to reduce the computational complexity associated to L1-trackers. The 

eighth tracker is the Least Soft-Threshold Squares Tracker (LSST) [15] is based on PF 

and performs liner regression via least-soft threshold squares distance between the 

observation and the target model. 

 



  
 

D.3.2 v1 Collaborative approaches for people behaviour understanding 11 

 

We have implemented six different configurations of TPF: TPF3 (ST, AFT, LOT), TPF4 

(ST, AFT, LOT, IVT), TPF5 (ST, AFT, LOT, IVT, FCT), TPF6 (ST, AFT, LOT, IVT, 

FCT, SOAM), TPF7 (ST, AFT, LOT, IVT, FCT, SOAM, L1APG) and TPF8 (ST, AFT, 

LOT, IVT, FCT, SOAM, L1APG, LSST). 

 

Table 1. Comparison of the proposed approach (TPF) with the State-of-the-Art in terms of the 

Overlap Score (OS) (Mean+/-Standard deviation). Key - AVGF: Average Fusion; SYMT: 

Symbiotic Tracker; VTS: Visual Tracker Sampler; STR: Struck; KCF: Kernelized Correlation 

Filter Tracker 

 

The following figure presents the number of trackers employed from the pool of M 

trackers. As we can see the 100% of trackers is rarely achieved and, therefore, trackers 

failing are discarded from the final result. 

 

Figure 12. Percentage of trackers used in the proposed approach 
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Figure 13. Sample tracking results. From top to bottom row: Students-P1, Students-P3, 

CAVIAR-P4, PETS-P10 and PETS-P12. TPF (green dotted); STRUCK (red dotted); VTS (blue 

solid); SymT (blue dotted); AvgF (yellow solid); KCF (magenta solid). 

 

2.4.2. Single-target single-camera tracking 2 

 

The achievement in this area corresponds to the following master thesis: 

 

Moreno De Pablos, E. “Seguimiento de objetos basado en múltiples algoritms”, Trabajo 

Fin de Grado, Degree ITST, Universidad Autonoma de Madrid, July 2016 

 

The main objective of this work consists on studying metrics to compare algorithms for 

tracking objects in video sequences using a set of search or tracking algorithms. The 

results of this work is mainly focused on the quality analysis and hence it has been 

reported in the deliverable D2.3 corresponding to the task “T2.3 Quality Analysis” A 

summary is provided here with respect to the collaborative tracking.  

The proposed framework for tracker combination is described in the following figure. It 

can be seen that depends on some inter-tracker and intra-tracker measures (described in 

D2.3). 
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Figure 14. Block diagram of the proposed approach to combine four trackers. 

 

To show the applicability, a simple fusion algorithm has been implemented taking those 

trackers with high similarity (e.g. values over 0.7). Two fusion versions are considered: 

equal and similarity-weighted combinations.  

 

For the experiments, a set of 10 sequences has been extracted from the Tracker 

Benchmark 1.0 (https://sites.google.com/site/trackerbenchmark/benchmarks/v10). As 

trackers, this study used the following: 

• MS (PSU R.Collins, CSE. Mean-shift Tracking. 2006) 

• CBWH (David Zhang y Chengke Wu Jifeng Ning, Lei Zhang. Robust mean shift 

tracking with corrected background-weighted histogram. IET CVI 2010) 

• PFC (Fabian Kaelin, An Adaptive Color-Based Particle Filter. ECCV 2010) 

• ACA (Michael Felsberg y Joost van de Weijer Martin Danelljan, Fahad Shahbaz 

Khan. Adaptive color attributes for real-time visual tracking. CVPR 2014) 

 

Sample results are show in the following figures/tables. 

 

 
(a) 

 

https://sites.google.com/site/trackerbenchmark/benchmarks/v10


  
 

D.3.2 v1 Collaborative approaches for people behaviour understanding 14 

 

 
(b) 

Table 2. Average results for the inter-tracker and intra-tracker distance using the spatial 

overlap. Higher values indicate that the trackers have similar results 

 

Figure 15. Similarity results for the sequence I3_car_basic_2. Top: ground-truth error, 

spatial overlap and normalized overlap score. Bottom: sample frame. 

The final results of the fusion approaches are show in the following Table  

 

Table 3. Average accuracy results for proposed fusion approaches based on the inter-tracker 

and intra-tracker distance computed previously. 
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2.4.3. Single-target multi-camera tracking 

Third, a multi-camera single-target tracking approach that takes advantage of the 

consumption models developed within this task T3.2 (see section 2.1.1). This work has 

been published in the journal IEEE Transactions on Circuits and Systems for Video 

Technology. 

 

In this work, we make use of the following consumption models for: 

• Sensing: capturing frames 

• Processing: computer vision task 

• Communication: exchange of metadata among smart cameras 

 

After decomposing these items for the sensing, processing and communication parts of a 

smart camera, we apply the proposed consumption models to a coalition-based approach 

for multi-camera target tracking [4].  

 

The following figure provides an overview of the multi-camera tracker based on 

coalitions 

 

 
Figure 16. Operations performed by cameras for coalition-based target tracking [4]. Colors 

indicate subsets of operations for the existing coalition roles. Please refer to [4] for a detailed 

description of each block. 
 

 

The following figure describes the setup employed for experiments (PETS 2009 dataset). 
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Figure 17. Fields-of-view on the ground-plane for the camera network of S2 L1 sequence 

(PETS2009) and target initialization on each view (blue box). 

 

Some results are presented in the following figures. The following figure presents the 

evolution of the consumption and the associated tracking error when increasing the 

sensing framerate or processing clock. 

 

 

Figure 18. Coalition tracking error and associated energy consumption for dynamic sensing and 

processing capabilities (left and right columns, respectively). (a)-(c) Correspond to various 

sensing framerates (fp = 1.5Ghz) whereas (b)-(d) correspond to various processing clocks 

(framerate = 25fps). 
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Figure 19 presents the associated error and camera consumption when the data is captured 

at different framerates. We can observe some differences in the average tracking error 

due to  

 

Figure 19. Camera tracking error on the ground-plane and energy consumption for various 

framerates. The processing clock is fp = 1.5GHz. 

 

The following figure shows visual tracking examples for different framerates. While 

tracking accuracy increases in the selected camera views from 1fps to 5fps (first to second 

columns), there is no significant accuracy improvement from 5fps to 7fps (second to third 

columns), although camera consumption increases since more frames are captured and 

processed. 
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Figure 20. Visual tracking results for frame 21 on each camera view under different sensing 

framerates (fps). Green and blue boxes correspond to the estimated and ground-truth target 

locations for each camera. (From top to bottom rows: 1fps; 5fps and 7fps) 

 

2.4.4. Multi-target multi-camera tracking 

We have developed an approach for multi-camera multi-target tracking in smart camera 

networks based on target detection quality developed in “T2.3 Quality analysis” and 

simulator developed in the WP1. This work has been published in the journal IEEE 

Computer. 

 

This case study considers distributed fusion where cameras exchange information to 

perform tasks without a leader organizing this collaborative processing [16]. Hence, no 

local fusion centers exist and often local communication is used (i.e. camera neighbours) 

which offers scalability for sensor fusion.  

 

Consensus-based approaches are widely used to distributely achieve the average over a 

quantity among the nodes of the network. For each consensus iteration, cameras share the 

data and then, compute the mean of the received data by local neighbours. As the number 

of iterations increases, cameras obtain the same value in a distributed fashion. This 

concept can be applied to track targets on the ground-plane by using a Kalman-Consensus 

Filter (KCF) [17]. Each camera runs a KCF whose output is broadcast to all neighbor 

cameras which take the average of the received target state. By repeating this process over 

time, all network nodes obtain the same information so the state of the target being tracked 

(e.g. its position) is known by all cameras. To improve capabilities of KCF and avoid 

problems when the target is not observed by a particular camera (i.e. it would share an 

empty result), the Information-Consensus filter (ICF) [18] is proposed to efficiently share 

data across the network by also exchanging measurement information of targets. 

 

This case study considers a simulated camera network with eight wireless cameras is 

defined over an 500m-by-500m area where four targets move around the monitored area 

during 200s (see Fig. 6a). Cameras get measurements at a frequency of 4Hz (i.e. sampling 

time of 0:25s) and have a communication range of 250m. We compare the accuracy and 

energy consumption of KCF and ICF approaches under ideal and real network conditions 

over 10 independent runs. The following figure presents an schematic of the setup. 
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Figure 21. Simulated network composed of eight wireless cameras. Four sample trajectories of 

targets are in green, red, blue and black colours (only 100 samples are shown for each one). 

 

The following figure presents the results for ideal network conditions. As expected, the 

tracking error decreases with increasing number of iterations since the estimation error of 

each camera is diffused over the other cameras. ICF outperforms KCF by sharing prior 

information about absence of measurements when the targets are outside the FoV of 

cameras. We also compare the consumption of these two approaches. The same figure 

shows that ICF requires more than twice the energy of KCF for any iteration of the 

consensus. Thus, the increased accuracy of ICF comes at a cost of extra resources for 

processing and communication. 

 
(a) 

 
(b) 

Figure 22. Comparative results for distributed-based target tracking using the consensus-based 

approaches (ICF and KCF) and assuming ideal network conditions. 
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The following figure presents the same tracking results for real network condition. Real 

conditions should account many factors such as the transceiver (radio) models; the 

communication protocol (e.g. MAC); interference and attenuation of the wireless 

communication channel; and the latencies of the camera modules. Another key issue is 

the synchronization of the cameras in the network which can be internal and external. 

 
Figure 23. Comparative results for distributed-based target tracking using the consensus-based 

approaches (ICF and KCF) and assuming real network conditions. 
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Unlike ideal network conditions, the tracking error for both ICF and KCF does not 

decrease as the consensus iterations are increased. This dramatic change in the accuracy 

trend is due to the accumulated delay of the iterations in the consensus which is reported 

in the bottom graph. 
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3. Conclusions and future work 

3.1. Achievements 
 

As summary, the achievements of task 3.2 are: 

 

- A model describing the usage of resources of smart cameras which enables the 

development of collaborative approaches based on resource-aware policies. 

 

- Collaborative approaches to adapt parameters during runtime via maximizing the 

agreement of independent sources. This strategy has been applied to 

o shadow detection 

o people detection. 

 

- Several approaches for collaborative video tracking based on quality signals for 

detections and tracking results. The following setups have been explored to 

combine multiple algorithms for: 

o single-target and single-view 

o single-target and multi-view 

o multi-target and multi-view 

3.2. Future work 
As future work, we will focus on the following: 

- Collaborative people detection. Improvement of the previous prototype 

- Combination of multiple features for single-target and single-view 

- Combination of multiple algorithms and features for multi-target and single-view 
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